Analysis of distribution laws of insulation indicators of high-voltage oil-fillled bushings of hermetic and non-hermetic execution

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.140873

Keywords:

high-voltage bushings, insulation indicators, statistical criteria, variance analysis, consent criteria, Weibull’s distribution

Abstract

The object of research is the distribution laws of capacitor-type insulation values that were obtained during preventive tests for both serviceable and defective high-voltage bushings of 110 kV of hermetic and non-hermetic execution. One of the most problematic areas is insufficient knowledge and lack of justification of the laws for distributing these preventive tests of insulation of bushings.

In the course of the research, a comprehensive approach to the solution of the problems was used, including probability theory and statistical analysis, analysis of world experience and a logical approach. In the long term, the results are expected to be extended to the bushing of other types having similar problems in the diagnosis of the condition.

The method of statistical processing of the results of periodic tests of high-voltage bushings is proposed, which allows to form arrays with homogeneous values of indicators in conditions of limited measurement information. It is established that for the bushings of hermetic and non-hermetic execution, the insulation values for both the serviceable and faulty state can be described by the Weibull distribution. It is established that the distribution densities for serviceable and faulty state of high-voltage bushings intersect, and therefore it is impossible to select the maximum permissible values of insulation parameters that would not give erroneous solutions. The maximum permissible values of the insulation indices of high-voltage oil-filled bushings are proposed using statistical methods and taking into account the most significant operational factors. It is shown that for high-voltage bushings of the same execution there is a shift in mathematical expectations, which is due to the difference in operating time and different load factors of transformers. This circumstance must be taken into account when adjusting the maximum permissible values of the insulation indices of high-voltage bushings.

The use of the developed algorithms and procedures of mathematical statistics in the problems of diagnosing high-voltage bushings contribute to improving expert judgment and decision-making.

Author Biographies

Оleg Shutenko, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Transmission of Electric Energy

Alexandra Zagaynova, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Assistant

Department of Transmission of Electric Energy

Galina Serdyukova, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Transmission of Electric Energy

References

  1. Feilat, E. A. (2013). Analysis of the Root Causes of Transformer Bushing Failures. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 7, 791–796.
  2. Anglhuber, M., Velasquez, J. L. (2017). Contreras Dispersing the clouds – gain clear insight into your bushings using advanced diagnostics method. Transformer Magazine. Special Edition: Bushing, 126–132.
  3. Septyani, H. I., Arifianto, I., Purnomoadi, A. P. (2011). High voltage transformer bushing problems. Proceedings of the 2011 International Conference on Electrical Engineering and Informatics. doi: http://doi.org/10.1109/iceei.2011.6021566
  4. Metwally, I. (2011). Failures, Monitoring and New Trends of Power Transformers. IEEE Potentials, 30 (3), 36–43. doi: http://doi.org/10.1109/mpot.2011.940233
  5. Kassikhin, S. D., Sipilkin, K. G., Slavinskiy, A. Z., Ustinov, V. N., Pintal, Yu. S., Vereshhagin, M. B. (2010). Otsenka effektivnosti i tselesoobraznosti diagnostiki vysokovol'tnykh vvodov na osnove opyta ekspluatatsii. Ekaterinburg: Izdatel'skiy dom «Avtograf», 232.
  6. Rubanenko, O. Ye., Humeniuk, O. I. (2011). Vysokovoltni vvody. Konstruktsiia, ekspluatatsiia, diahnostyka i remont. Vinnytsia: VNTU, 183.
  7. Sedunin, A. M., Chalov, I. A., Sidel'nikov, L. G. (2011). Klassifikatsiya vysokovol'tnykh vvodov silovykh transformatorov i problemy ikh ekspluatatsii na predpriyatiyakh gornoy promyshlennosti. Gornoe oborudovanie i elektromekhanika, 12, 24–30.
  8. L'vov, M. Yu. (2000). Kolloidno-dispersnye protsessy v vysokovol'tnykh germetichnykh vvodakh transformatorov. Elektricheskie stantsii, 4, 49–52.
  9. Snetkova, O. V. (2004). Opyt diagnostiki maslonapolnennykh vvodov 110–500 kV v OAO «Mosenergo». Elektro, 2, 39–42.
  10. Komarov, V. I., Lushin, A. N., Osotov, V. N., Prosvirnin, D. N. (2008). O vliyanii masla marki GK na nadezhnost' elektrooborudovaniya. Materialy plenarnogo zasedaniya soveta «Vysokovol'tnye vvody, «Obshhie problemy diagnostiki silovogo elektrooborudovaniya». Available at: http://www.myshared.ru/slide/58746/. Last accessed: 15.09.2016
  11. Arbuzov, R. S., Zhivodernikov, S. V., Lavrov, V. Yu., Ovsyannikov, A. G., Tarasov, A. G., Tolchin V. M. et. al.; Tolchin, V. M. (Ed.) (2012). Problemnoe oborudovanie i problemy diagnostirovaniya. Diagnostika elektricheskikh ustanovok: Materialy Sed'mogo izdaniya nauchno-prakticheskogo seminara Obshhestvennogo Soveta spetsialistov Sibiri i Vostoka po problemam diagnostiki elektricheskikh ustanovok. Khabarovsk, 61–78.
  12. Ovsyannikov, A. G., Maryushko, E. A. (2014). Problemy ekspluatatsii i diagnostirovaniya vvodov s RIP-izolyatsiey. Energoekspert, 3, 22–26.
  13. Davidenko, I. V. (2009). Opredelenie dopustimykh znacheniy kontroliruemykh parametrov maslonapolnennogo oborudovaniya na osnove massiva nablyudaemykh dannykh. Elektrichestvo, 6, 10–21.
  14. Davidenko, I. V. (2006). Issledovanie pokazateley, opisyvayushhikh rabochee sostoyanie maslonapolnennykh vvodov, metodami matematicheskoy statistiki. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region: Tekhnicheskie nauki, 15, 31–33.
  15. Zakharov, A. V. (2001). Obnaruzhenie defektov silovykh maslonapolnennykh transformatorov kak protsedura proverki statisticheskikh gipotez. Novoe v rossiyskoy energetike, 2, 19–28.
  16. Shutenko, O. V. (2017). Opredelenie znacheniy granichnykh kontsentratsiy rastvorennykh v masle gazov metodom minimal'nogo riska. Elektrichestvo, 8, 50–60.
  17. Shutenko, O. (2017). Determine the boundary value of the concentration of gases dissolved in oil of method minimum risk. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). Kyiv, 468–472.
  18. Levin, M. N. (2013). Statisticheskiy metod raspoznavaniya defektov v silovykh transformatorakh pri ikh tekhnicheskom obsluzhivanii po sostoyaniyu. Promyshlennaya energetika, 8, 37–41.
  19. Lin, M.-J. (2015). Gaussian distribution Diagnoses in Transformer’s Insulating Oil. Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015). Chongqing, 824–830. doi: http://doi.org/10.2991/jimet-15.2015.154
  20. Mirowski, P., LeCun, Y. (2012). Statistical Machine Learning and Dissolved Gas Analysis: A Review. IEEE Transactions on Power Delivery, 27 (4), 1791–1799. doi: http://doi.org/10.1109/tpwrd.2012.2197868
  21. Felea, I., Secui, D., Oltean, M. (2011). The impact analyze of electric stress level in content of insulating oil gases in power transformers. Journal of sustainable energy, 2 (4), 7–12.
  22. Shutenko, O. V., Baklai, D. N. (2014). Analiz zakoniv rozpodilu kontsentratsii haziv, rozchynenykh v masli vysokovoltnykh transformatoriv nehermetychnoho vykonannia. Visnyk NTU «KhPI», 24 (067), 102–117.
  23. Shutenko, O. V., Baklay, D. N. (2012). Issledovanie zakonov raspredeleniya fiziko-khimicheskikh pokazateley transformatornykh masel. Vіsnik NTU «KHPІ», 23, 170–186.
  24. Shutenko, O. V., Baklay, D. N. (2013). Osobennosti statisticheskoy obrabotki rezul'tatov ekspluatatsionnykh ispytaniy pri issledovanii zakonov raspredeleniya rezul'tatov khromatograficheskogo analiza rastvorennykh v masle gazov. Vіsnik NTU «KHPІ», 60 (1033), 136–150.
  25. Gmurman, V. E. (1977). Teoriya veroyatnostey i matematicheskaya statistika. Moscow: Vysshaya Shkola, 479.
  26. Shutenko, O. V., Baklay, D. N. (2013). Planirovanie eksperimental'nykh issledovaniy v elektroenergetike. Metody obrabotki eksperimental'nykh dannykh. Kharkiv: NTU «KHPI», 268.
  27. Johnson, N. L., Leone, F. C. (1977). Statistics and Experimental Design in Engineering and the Physical Sciences. Vol. 1 (Probability & Mathematical Statistics S.). John Wiley & Sons Inc, 618.
  28. Scheffe, H. (1999). The Analysis of Variance. Wiley-Interscience, 477.
  29. Normy vyprobuvannia elektroobladnannia: SOU-N EE 20.302:2007. (2007). Prykaz Minpalyvenerho 15.01.2007. No. 13. Kyiv: OEP «HRYFRE», Ministerstvo palyva ta enerhetyky Ukrainy, 262.
  30. Tret'yak, L. N. (2004). Obrabotka rezul'tatov nablyudeniy. Orenburg: GOU OGU, 171.

Published

2018-04-24

How to Cite

Shutenko О., Zagaynova, A., & Serdyukova, G. (2018). Analysis of distribution laws of insulation indicators of high-voltage oil-fillled bushings of hermetic and non-hermetic execution. Technology Audit and Production Reserves, 4(1(42), 30–39. https://doi.org/10.15587/2312-8372.2018.140873

Issue

Section

Technology and System of Power Supply: Original Research